BSc(P) CSc-Data Analysis using Python Programming (SEC-1A)

(Guidelines, August 2020)

UNIT	Chapter	References	No. of Lectures
UNIT I - Introduction to Pandas, NumPy, SciPy: Introduction to Pandas DataFrames, Numpy multi- dimentional arrays, and SciPy libraries to work with different datasets	1.3 5.1-5.2 4.1 to 4.4	1	7
UNIT II - Import and Export of Data: Installing, loading and using packages for importing and exporting data in Python	6.1 upto page no. 176 (excluding Tables 6.1 and 6.2)	1	6
UNIT III - Data Preprocessing and Transformation: Handling of missing data, Data cleaning and transformation	7 (upto page No. 213)	1	5
UNIT IV - Data Exploration Exploring data using statistical methods: mean, median, mode ¹ , quantiles. Building contingency table 2. Basics of grouping data and Correlation.	5.3 10.1 (upto page 293) ¹ use mode()	1	6
Unit 5 - Data Visualization: Scatter Plot, line graph, histogram, boxplot, line plots regression, word clouds ² , exporting plots as images.	9.1-9.2 ² use wordcloud package	1	4

Text book:

1. Mckinney, W. (2017). Python for Data Analysis. Second edition, O'reilly (SPD).

Additional Resources

- 2. Grus, J. (2016). Data Science from scratch. First edition, O'reilly (SPD).
- 3. VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. Second edition, O'reilly (SPD).

1 Mode: use mode function of pandas

(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mode.html)
2 Contigency table using crosstab function : use crosstab function
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.crosstab.html

Links for Examples on Word clouds:

https://www.datacamp.com/community/tutorials/wordcloud-python https://www.tutorialspoint.com/create-word-cloud-using-python https://www.geeksforgeeks.org/generating-word-cloud-python/ Links for Examples on Contigency table: https://www.geeksforgeeks.org/contingency-table-in-python/ https://www.tutorialspoint.com/contingency-table-in-python

Additional daratsets for practice: Chapter 14: Data analysis on datasets [1]

Specimen list for practicals:

Use data set of your choice from Open Data Portal (https://data.gov.in/) for the following exercises, wherever datasets are not mentioned explicitly.

- 1. Make visual representations of data using libraray Matplotlib and apply basic principles of data graphics to create rich analytic graphs for available datasets.
- 2. Use boston house-prices dataset avaiable with sklearn library to do the following for: i. Generate box whisker plots for price and age of the owner
 - ii. Identify outliers, if any
 - iii. Display 5 point summary of data distribution for all attributes
 - iv. Find if there is any missing value in data or not
 - v. Find pairwise correlation between attributes

vi. Use scatterplot to show relationship between each feature w.r.t target class in a single panel for comparison

- 3. Create a CSV file having employee data records. Each employee record has three features viz. age, home city and salary. Import employee file and :
 - i. Draw scatter plot for age vs salary
 - ii. Plot histogram for features age and salary
 - iii. Plot Pie chart for the qualitative attribute city
 - iv. Generate box plots for salary and age
- 4. Import iris data using sklearn library to:

i. Compute mean, mode, median, standard deviation, confidence interval and standard error for each feature

- ii. Compute correlation between length and width of sepal feature
- iii. Find covariance between length of sepal and petal
- iv. Build contingency table for class feature
- 5. Download datasets Hepatitis and automobile from UCI repository
 - i. Find the number of records which are noise free
 - ii. Clean data after removing noise
 - iii. Normalize quantitative features in range of [0,1]

iv. Compare frequency distribution for any two columns by plotting histograms for any two columns in the same plot

- 6. Do the following using iris CSV file (use of Pandas/NumPy/SciPy)
 - i. Find total number of records and columns in a csv file
 - ii. Find correlation and contingency table for any two variables
 - iii. Find the coulmn with maximum variance

iv. Draw scatter plot for any two columns and also write their correlation in the caption of scatter of

plot

- 7. Use car dataset from UCI repository (<u>https://archive.ics.uci.edu/ml/machine-learning-databases/car/</u>)
 - i. Find the most popular car and draw appropriate plot to justify your answer
 - ii. Plot barchart to compare capacity of any two cars alongwith their cost
 - iii. Draw word cloud for car names and export to a file